CALCULATING THE DEGREE DISTANCE OF PARTIAL HAMMING GRAPHS

Aleksandar Ilić ${ }^{\ddagger}$
Faculty of Sciences and Mathematics, University of Niš, Serbia
e-mail: aleksandari@gmail.com
Sandi Klavžar
Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia e-mail: sandi.klavzar@fmf.uni-lj.si
Dragan Stevanović
University of Primorska-FAMNIT, Koper, Slovenia
Mathematical Institute, Serbian Academy of Science and Arts, Belgrade, Serbia
e-mail: dragance106@yahoo.com

(Received June 1, 2009)

Abstract

If G is a connected graph with vertex set $V(G)$, then the degree distance of G is defined as $D D(G)=\sum_{\{u, v\} \in V(G)}(\operatorname{deg} u+\operatorname{deg} v) d(u, v)$, where $\operatorname{deg} u$ is the degree of vertex u, and $d(u, v)$ denotes the distance between u and v. In the chemical literature, $D D(G)$ is better known under

[^0]the name Schultz index. In the class of partial Hamming graphs, which include trees, benzenoid and phenylene systems among others, we express the degree distance in terms of the canonical metric representation, thus simplifying its computation.

1 Introduction

Let G be a connected graph of order n and $V(G)$ its vertex set. We denote the degree of a vertex $u \in V(G)$ by $\operatorname{deg} u$ and the distance between vertices u and $v \in V(G)$ by $d(u, v)$. The degree distance of G is defined as

$$
D D(G)=\sum_{\{u, v\} \in V(G)}(\operatorname{deg} u+\operatorname{deg} v) d(u, v) .
$$

The degree distance seems to have been considered first in connection with certain chemical applications by Dobrynin and Kochetova [1] and at the same time by Gutman [2], who named it the Schultz index. This name was eventually accepted by most other authors (see, e.g., [3, 4, 5]). In fact, there are several names (degree distance, MTI index, Schultz index, Zagreb index) associated to this index or closely related indices, we refer to [6] for a clarification of these notions.

The degree distance may be considered a weighted version of the Wiener index [7, 8]. Recall that the Wiener index of G is defined as

$$
W(G)=\sum_{\{u, v\} \in V} d(u, v) .
$$

The relations between the degree distance and the Wiener index were studied in $[2,3,9,10,11$, 12]. An example of such relation,

$$
D D(T)=4 W(T)-n(n-1),
$$

which holds whenever T is a tree of order n may be found in $[2,11]$.
In the mathematical literature, extremal properties of $D D(G)$ were investigated in $[13,14$, $15,16,17]$. For the recent results on the Schultz molecular topological index see [18, 19, 20].

Here we show that $D D(G)$ can be expressed in terms of the quotient graphs of the canonical metric representation of G. The metrics of the quotient graphs can be ommited when G is isometrically embeddable into a Hamming graph, which significantly simplifies calculation of
the degree distance for partial Hamming graphs. A similar approach has been recently used to calculate the Wiener index of a graph via its canonical metric representation [21].

In the rest of this section we present necessary concepts, while in the next section the main result is proved and a few examples given. The third section further specializes into calculating degree distance of benzenoid systems.

The Cartesian product $G_{1} \square \cdots \square G_{k}$ of graphs G_{1}, \cdots, G_{k} has the vertex set $V\left(G_{1}\right) \times$ $\cdots \times V\left(G_{k}\right)$, two vertices $\left(u_{1}, \ldots, u_{k}\right)$ and $\left(v_{1}, \ldots, v_{k}\right)$ being adjacent if they differ in exactly one position, say in i th, and $u_{i} v_{i}$ is an edge of G_{i}. Let d_{G} stands for the usual geodesic distance in G. It is well-known that for $G=G_{1} \square \cdots \square G_{k}$ and vertices $u, v \in G$ we have $d_{G}(u, v)=\sum_{i=1}^{k} d_{G_{i}}\left(u_{i}, v_{i}\right)$, see [22].

A Hamming graph is the Cartesian product of complete graphs and a partial Hamming graph is a graph that isometrically (that is, distance preserving) embeds into a Hamming graph. In the particular case where all the factors are K_{2} 's we speak of hypercubes and partial cubes, respectively, whose important examples include trees, median graphs, benzenoids, phenylenes, grids, bipartite torus graphs, ... Partial Hamming graphs have been studied and characterized in $[23,24,25]$.

The canonical metric representation of a connected graph G, due to Graham and Winkler [26], is defined as follows. Edges $x y$ and $u v$ of G are in the Djoković-Winkler [27, 28] relation Θ if $d(x, u)+d(y, v) \neq d(x, v)+d(y, u)$. Let Θ^{*} be the transitive closure of Θ and let E_{1}, \ldots, E_{k} be the Θ^{*}-equivalence classes, Θ^{*}-classes for short. For $i=1, \ldots, k$, let G_{i} denote the graph $\left(V(G), E(G) \backslash E_{i}\right)$ and $C_{1}^{(i)}, \ldots, C_{r_{i}}^{(i)}$ the connected components of G_{i}. As an example, consider the graph G from Fig. 1. It has two Θ^{*}-classes E_{1} and E_{2}. The graphs G_{1} and G_{2} are also shown.

Figure 1: Θ^{*}-equivalence classes of G.

Define the graphs $G_{i}^{*}, i=1, \ldots, k$, with $V\left(G_{i}^{*}\right)=\left\{C_{1}^{(i)}, \ldots, C_{r_{i}}^{(i)}\right\}$ where $C_{j}^{(i)} C_{j^{\prime}}^{(i)}$ is an edge of G_{i}^{*} if some vertex of $C_{j}^{(i)}$ is in G adjacent to a vertex of $C_{j^{\prime}}^{(i)}$. Let the contractions $\alpha_{i}: V(G) \rightarrow V\left(G_{i}^{*}\right)$ be given by $\alpha_{i}(v)=C_{j}^{(i)}$ where $v \in C_{j}^{(i)}$. Then the mapping

$$
\begin{equation*}
\alpha: G \rightarrow G_{1}^{*} \square \cdots \square G_{k}^{*}, \tag{1}
\end{equation*}
$$

where $\alpha(v)=\left(\alpha_{1}(v), \ldots, \alpha_{k}(v)\right)$, is the canonical metric representation of the graph G. Graham and Winkler proved, among others, that α is an irredundant isometric embedding. Here irredundant means that every factor graph G_{i}^{*} has at least two vertices and that each vertex of G_{i}^{*} appears as a coordinate of some vertex $\alpha(u)$. For more results on the canonical representation we refer to the papers $[29,30,31]$ and the books $[32,22]$.

2 The main result

Theorem 2.1 Let $G=(V, E)$ be a partial Hamming graph. Let the notations of its canonical metric representation be as in (1) and let d_{i} be the distance function of G_{i}^{*}. For $i=1, \ldots, k$ and $j=1, \ldots, r_{i}$, let $\operatorname{deg} C_{j}^{(i)}$ be the sum of degrees in G of vertices that are mapped to $C_{j}^{(i)}$ by α_{i}. Then

$$
D D(G)=\sum_{i=1}^{k} \sum_{j=1}^{r_{i}} \operatorname{deg} C_{j}^{(i)}\left(n-\left|C_{j}^{(i)}\right|\right) .
$$

Proof. Let $\alpha: G \rightarrow G^{*}=G_{1}^{*} \square \cdots \square G_{k}^{*}$ be the canonical representation of G, where for $u \in V$, $\alpha(u)=\left(\alpha_{1}(u), \ldots, \alpha_{k}(u)\right)$. Then we can compute as follows:

$$
\begin{aligned}
D D(G) & =\sum_{\{u, v\} \in V}(\operatorname{deg} u+\operatorname{deg} v) d_{G}(u, v)=\sum_{\{u, v\} \in V}(\operatorname{deg} u+\operatorname{deg} v) d_{G^{*}}(\alpha(u), \alpha(v)) \\
& =\sum_{\{u, v\} \in V}(\operatorname{deg} u+\operatorname{deg} v) \sum_{i=1}^{k} d_{i}\left(\alpha_{i}(u), \alpha_{i}(v)\right) \\
& =\sum_{i=1}^{k} \sum_{\{u, v\} \in V}(\operatorname{deg} u+\operatorname{deg} v) d_{i}\left(\alpha_{i}(u), \alpha_{i}(v)\right) .
\end{aligned}
$$

Since G is a partial Hamming graph, each G_{i}^{*} is a complete graph, so that $d_{i}\left(\alpha_{i}(u), \alpha_{i}(v)\right)=1$
whenever $\alpha_{i}(u) \neq \alpha_{i}(v)$. Thus,

$$
\begin{aligned}
D D(G) & =\sum_{i=1}^{k} \sum_{\{u, v\} \in V, \alpha_{i}(u) \neq \alpha_{i}(v)} \operatorname{deg} u+\operatorname{deg} v \\
& =\sum_{i=1}^{k} \sum_{u \in V} \operatorname{deg} u\left(n-\left|\alpha_{i}(u)\right|\right) \\
& =\sum_{i=1}^{k} \sum_{j=1}^{r_{i}} \sum_{u \in \alpha_{i}^{-1}\left(C_{j}^{(i)}\right)} \operatorname{deg} u\left(n-\left|C_{j}^{(i)}\right|\right) \\
& =\sum_{i=1}^{k} \sum_{j=1}^{r_{i}} \operatorname{deg} C_{j}^{(i)}\left(n-\left|C_{j}^{(i)}\right|\right) .
\end{aligned}
$$

In the case of partial cubes, Theorem 2.1 specializes to an even more applicable form. For this sake some preparation is needed. It is not difficult to observe that G is a partial cube if and only if every G_{i}^{*} of its canonical metric representation is isomorphic to K_{2}. Hence every corresponding graph G_{i} consists of two connected components, they are denoted $W_{i, 0}$ and $W_{i, 1}$ and called halfspaces of G. In other words, $W_{i, \chi}$ consists of those vertices u of G for which $\alpha_{i}(u)=\chi, \chi \in\{0,1\}$.

Let G be a partial cube with halfspaces $W_{i, \chi}, 1 \leq i \leq k, \chi \in\{0,1\}$. For any $1 \leq i \leq k$ and any $\chi \in\{0,1\}$ we set

$$
D_{(i, \chi)}=\sum_{u \in W_{(i, \chi)}} \operatorname{deg}(u)
$$

Since $r_{i}=2$ for any i and $\left|W_{(i, \chi)}\right|+\left|W_{(i, \chi)}\right|=n$, Theorem 2.1 reduces to:
Corollary 2.2 Let G be a partial cube with halfspaces $W_{i, \chi}, 1 \leq i \leq k, \chi \in\{0,1\}$. Then

$$
D D(G)=\sum_{i=1}^{k}\left(\left|W_{(i, 0)}\right| D_{(i, 1)}+\left|W_{(i, 1)}\right| D_{(i, 0)}\right) .
$$

An advantage of Corollary 2.2 comparing to computing $D D(G)$ by the definition is that we need not to compute distance but only count vertices and sum up the degrees. This result can be considered as another instance of the so-called cut method. For its general description and an overview of its applications in chemical graph theory see [33]. The method got its name because of benzenoid graph in which the Θ^{*}-classes are precisely the orthogonal cuts. We also mention
a related result on the Wiener index of weighted graphs from [34]. In that case, however, the weighted Wiener index was defined as $\sum_{u, v} w(u) w(v) d(u, v)$, where w is an arbitrary weight function.

3 Applications to chemical graphs

In this section we will apply Corollary 2.2 to a particular, but chemically very important class of partial cubes-benzenoid graphs.

The term benzenoid graph is used for graphs constructed in the following manner. Consider the hexagonal lattice \mathcal{H}. Let Z be a circuit on this lattice. Then benzenoid graphs are formed by the vertices and edges of \mathcal{H} lying on some circuit Z or in its interior. The vertices and edges belonging to Z form the perimeter of the respective benzenoid graph, while the vertices (if any) not belonging to the perimeter are said to be the internal vertices.

We first present two simple classes of chemical graphs to get the idea how Corollary 2.2 is used.

3.1 Linear benzenoid chains

Consider the linear benzenoid chain L_{h}, see Fig. 3.1 for its description.

Figure 2: The linear benzenoid chain L_{h}
The number of vertices equals $n_{h}=4 h+2$, while the sum of all degrees equals $d_{h}=2 m_{h}=$ $10 h+2$ since there are $2(h-1)$ vertices of degree three and $(2 h+4)$ vertices of degree two. For the horizontal orthogonal cut we have the contribution $2(2 h+1)(5 h+1)$. For the hexagon C_{i}, there are two symmetrical orthogonal cuts with contributions

$$
\left(n_{i-1}+1\right) \cdot\left(d_{n-i}+4\right)+\left(n_{h-i}+1\right) \cdot\left(d_{i}+4\right) .
$$

Using again the symmetry, one has

$$
\begin{aligned}
D D\left(L_{h}\right) & =2(2 h+1)(5 h+1)+4 \sum_{i=1}^{k}(4(i-1)+3)(10(h-i)+6) \\
& =2\left(10 h^{2}+7 h+1+2 \sum_{i=1}^{k}\left(40 i h-10 h-40 i^{2}+34 i-6\right)\right) \\
& =\frac{2}{3}\left(40 h^{3}+72 h^{2}+47 h+3\right) .
\end{aligned}
$$

3.2 Linear phenylenes

Consider the linear phenylene $P H_{h}$, consisting of $h-1$ four-membered (cyclobutadiene) and h six-membered (benzene) rings, in which each cyclobutadiene unit is adjacent to two benzene rings, whereas benzene rings are not adjacent to each other, see Fig. 3.2.

Figure 3: The linear phenylene $P H_{h}$
The number of vertices equals $n_{h}=6 h$, while the sum of all degrees equals $d_{h}=2 m_{h}=$ $2(8 h-2)$. The horizontal cut of $P H_{h}$ contains $2 h$ edges, while any of the remaining $(h-1)+2 h$ cuts contains two edges. For the horizontal orthogonal cut we have the contribution $2 \cdot 3 h(8 h-2)$. For vertical cut at cyclobutadiene i, we have contribution $6 i(16(h-i)-2)+6(h-i)(16 i-2)$, and for the hexagon C_{i}, there are two symmetrical orthogonal cuts with contributions ($6 i-$ $3)(16(h-i)+6)+(6(h-i)+3)(16 i-10)$. Therefore,

$$
D D\left(P H_{h}\right)=12 h^{2}(8 h+1) .
$$

3.3 Coronene/circumcoronene series

We next obtain a closed expression for the degree distance of the coronene/circumcoronene homologous series $H_{k}, k \geq 1$. The first terms of this series are $H_{1}=$ benzene, $H_{2}=$ coronene, $H_{3}=$ circumcoronene, $H_{4}=$ circumcircumcoronene, see Fig. 3.3 where H_{3} is shown.

In Fig. 3.3, $2 k-1$ horizontal elementary cuts of H_{k} are indicated. There exist two additional groups of $2 k-1$ equivalent cuts, obtained by rotating the former group by $+60^{\circ}$ and -60°. The

Figure 4: The Coronene / Circumcoronene H_{3}.
number of vertices of H_{k} equals $n_{k}=6 k^{2}$, while there are exactly $6 k$ vertices of degree two. Therefore, the sum of all degrees equals

$$
d_{k}=2 m_{k}=2 \cdot 6 k+3 \cdot\left(6 k^{2}-6 k\right)=6 k(3 k-1) .
$$

It should be observed that because of symmetry, the contribution of the elementary cut C_{i} is equal to the contribution of $C_{2 k-i}, i=1,2, \ldots, k-1$. It can be shown by induction that for $i=1,2, \ldots, k$ the number of vertices above cut C_{i} equals $i(2 k+i)$, while the sum of degrees of the vertices is $(6 k-1) i-2 i+3 i^{2}$. Therefore,

$$
\begin{aligned}
\frac{1}{3} D D\left(H_{k}\right) & =2 \cdot\left(3 k^{2}\right)\left(9 k^{2}-3 k\right) \\
& +2 \sum_{i=1}^{k-1} i(2 k+i) \cdot\left(18 k^{2}-6 k-\left((6 i-1) k-2 i+3 i^{2}\right)\right) \\
& +2 \sum_{i=1}^{k-1}\left(6 k^{2}-i(2 k+i)\right) \cdot\left((6 i-1) k-2 i+3 i^{2}\right) \\
& =\frac{2 h}{15} \cdot\left(3+25 h-45 h^{2}-205 h^{3}+492 h^{4}\right) .
\end{aligned}
$$

Finally, we derive the fifth-order polynomial formula for the degree distance of H_{k}.

$$
D D\left(H_{k}\right)=\frac{2}{5} \cdot h\left(3+25 h-45 h^{2}-205 h^{3}+492 h^{4}\right) .
$$

4 Linear algorithm for benzenoid systems

Let B be a benzenoid graph. The edge set of B can be partitioned into three cuts as follows: each cut consists of all parallel edges. Then, making quotient graphs just as it is done in the canonical
metric representation, we obtain three trees T_{1}, T_{2}, T_{3}. The key observation of Chepoi [35] is that B embeds isometrically into $T_{1} \square T_{2} \square T_{3}$ (see [36, 37, 38, 39] for algorithms for calculating Wiener index, Szeged index and hyper-Wiener index in benzenoid systems and trees).

Let

$$
W(T, a, b)=\sum_{v \in T} \sum_{u \in T}(a(u) b(v)+a(v) b(u)) d(u, v)
$$

be the modified weighted Wiener index of tree T, such that every vertex $v \in T$ has two weight values $a(v)$ and $b(v)$.

For $i=1,2,3$, define the weight a_{i} to be the number of vertices and b_{i} to be the sum of degrees in the corresponding connected component.

Theorem 4.1 Let G be a benzenoid system and let α be the canonical embedding of G into $H=T_{1} \square T_{2} \square T_{3}$. Then

$$
D D(G)=W\left(T_{1}, a_{1}, b_{1}\right)+W\left(T_{2}, a_{2}, b_{2}\right)+W\left(T_{3}, a_{3}, b_{3}\right) .
$$

Proof. For $u \in V$, let $\alpha(v)=\left(v_{1}, v_{2}, v_{3}\right)$.

$$
\begin{aligned}
D D(G) & =\sum_{v \in V} \sum_{u \in V}(\operatorname{deg}(v)+\operatorname{deg}(u)) \cdot d(u, v) \\
& =\sum_{v \in V} \sum_{u \in V}(\operatorname{deg}(v)+\operatorname{deg}(u)) \cdot d_{H}(\alpha(u), \alpha(v)) \\
& =\sum_{v \in V} \sum_{u \in V}(\operatorname{deg}(v)+\operatorname{deg}(u)) \cdot \sum_{i=1}^{3} d_{T_{i}}\left(u_{i}, v_{i}\right) \\
& =\sum_{i=1}^{3}\left(\sum_{v \in V} \sum_{u \in V}(\operatorname{deg}(v)+\operatorname{deg}(u)) \cdot d_{T_{i}}\left(u_{i}, v_{i}\right)\right) \\
& =\sum_{i=1}^{3}\left(\sum_{v_{i} \in V\left(T_{i}\right)} \sum_{u \in V\left(T_{i}\right)}\left(b_{i}(v) a_{i}(u)+b_{i}(u) a_{i}(v)\right) \cdot d_{T_{i}}\left(u_{i}, v_{i}\right)\right) \\
& =W\left(T_{1}, a_{1}, b_{1}\right)+W\left(T_{2}, a_{2}, b_{2}\right)+W\left(T_{3}, a_{3}, b_{3}\right) .
\end{aligned}
$$

Let us take a closer look at the identity

$$
\sum_{v \in V} \sum_{u \in V}(\operatorname{deg}(v)+\operatorname{deg}(u)) \cdot d_{T_{i}}\left(u_{i}, v_{i}\right)=\sum_{v_{i} \in V\left(T_{i}\right)} \sum_{u \in V\left(T_{i}\right)}\left(b_{i}(v) a_{i}(u)+b_{i}(u) a_{i}(v)\right) \cdot d_{T_{i}}\left(u_{i}, v_{i}\right) .
$$

Consider two vertices v_{k} and u_{k} from $T_{k}, k=1,2,3$, and assume that they represent components consisting of vertices $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{p}^{\prime}$ and $u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{q}^{\prime}$ from T, respectively.

$$
\begin{aligned}
S & =\sum_{i=1}^{p} \sum_{j=1}^{q}\left(\operatorname{deg}\left(v_{i}^{\prime}\right)+\operatorname{deg}\left(u_{j}^{\prime}\right)\right) \cdot d_{T_{k}}\left(v_{k}, u_{k}\right) \\
& =d_{T_{k}}\left(v_{k}, u_{k}\right) \cdot\left(p \sum_{j=1}^{q} \operatorname{deg}\left(u_{j}^{\prime}\right)+q \sum_{i=1}^{p} \operatorname{deg}\left(v_{j}^{\prime}\right)\right) \\
& =d_{T_{k}}\left(v_{k}, u_{k}\right) \cdot\left(a_{k}(v) b_{k}(u)+a_{k}(u) b_{k}(v)\right) .
\end{aligned}
$$

We will present the linear algorithm for calculating the following generalization of weighted Wiener index.

Lemma 4.2 Let (T, a, b) be a double vertex-weighted tree. For an edge e of T, denote with T_{1} and T_{2} the connected components of $T \backslash e$ and for $i=1,2$ set

$$
A_{i}(e)=\sum_{u \in T_{i}} a(u) \quad \text { and } \quad B_{i}(e)=\sum_{u \in T_{i}} b(u) .
$$

Then we have

$$
W(T, a, b)=\sum_{e \in T}\left(A_{1}(e) B_{2}(e)+A_{2}(e) B_{1}(e)\right) .
$$

Using the fact that $A_{1}(e)+A_{2}(e)=\sum_{v \in T} a(v)=A$ and $B_{1}(e)+B_{2}(e)=\sum_{v \in T} b(v)=B$, one can easily extend the dynamic algorithm for calculating the sums $A_{1}(e)$ and $B_{1}(e)$ in tree T. Choose an arbitrary vertex v as the root and perform depth-first search from v. Denote with $p(v)$ the parent of vertex v in the DFS tree. Let $A(v)$ denote the sum of vertex weights a in the subtree rooted at v (including $a(v)$), while $B(v)$ denotes the sum of vertex weights b in the subtree rooted at v (including $b(v)$). Using the formulas

$$
A(v)=a(v)+\sum_{(u, v) \in E(T)} A(u) \quad \text { and } \quad B(v)=b(v)+\sum_{(u, v) \in E(T)} B(u)
$$

one can easily calculate the arrays A and B, while traversing vertices in the recursive call of depth-first search. Finally notice that $A_{1}((v, p(v)))=A(v)$ and $B_{1}((v, p(v)))=B(v)$.

The time complexity of the algorithm for calculating the modified weighted Wiener index is $O(n)$, and the memory used is $O(n)$, since we need three additional arrays of length n.

($\left.\mathrm{T}_{1}, \mathrm{a}_{1}, \mathrm{~b}_{1}\right)$
$(5,11)$
 ($\mathrm{T}_{2}, \mathrm{a}_{2}, \mathrm{~b}_{2}$)

Figure 5: Steps in computing $D D$ of the benzenoid system G
$D D\left(T_{1}, a_{1}, b_{1}\right)=(3 \cdot 44+18 \cdot 6)+(7 \cdot 34+16 \cdot 14)+(18 \cdot 6+3 \cdot 44)=942$
$D D\left(T_{2}, a_{2}, b_{2}\right)=(5 \cdot 39+16 \cdot 11)+(10 \cdot 26+11 \cdot 24)+(16 \cdot 11+5 \cdot 39)=1266$
$D D\left(T_{3}, a_{3}, b_{3}\right)=(3 \cdot 44+18 \cdot 6)+(7 \cdot 34+14 \cdot 16)+(13 \cdot 19+8 \cdot 31)+(18 \cdot 6+3 \cdot 44)=1437$

By Theorem 4.1, we have $D D(G)=942+1266+1437=3645$.

Acknowledgement. The first author was supported by Research Grant 144007 of the Serbian Ministry of Science. The second author was supported by Research Programme P10297 of the Slovenian Agency for Research. The third author was supported by Research Grant 144015G of the Serbian Ministry of Science and Research Programme P1-0285 of the Slovenian Agency for Research.

References

[1] A.A. Dobrynin, A.A. Kochetova, Degree distance of a graph: A degree analogue of the Wiener index, J. Chem. Inf. Comput. Sci. 34 (1994), 1082-1086.
[2] I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci. 34 (1994), 1087-1089.
[3] A.A. Dobrynin, Explicit relation between the Wiener index and the Schultz index of catacondensed benzenoid graphs, Croat. Chem. Acta 72 (1999), 869-874.
[4] H.P. Schultz, T.P. Schultz, Topological organic chemistry. 12. Whole-molecule Schultz topological indices of alkanes, J. Chem. Inf. Comput. Sci. 40 (2000), 107-112.
[5] B. Zhou, Bounds for the Schultz molecular topological index, MATCH Commun. Math. Comput. Chem. 56 (2006), 189-194.
[6] P. Dankelmann, I. Gutman, S. Mukwembi, H.C. Swart, On the degree distance of a graph, Discrete Appl. Math., in press. doi:10.1016/j.dam.2009.04.006
[7] A.A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 (2001), 211-249.
[8] A.A. Dobrynin, I. Gutman, S. Klavžar, P. Žigert, Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002) 247-294.
[9] I. Gutman, S. Klavžar, Bounds for the Schultz molecular topological index of benzenoid systems in terms of the Wiener index, J. Chem. Inf. Comput. Sci. 37 (1997), 741-744.
[10] S. Klavžar, I. Gutman, A comparison of the Schultz molecular topological index with the Wiener index, J. Chem. Inf. Comput. Sci. 36 (1996), 1001-1003.
[11] D.J. Klein, Z. Mihalić, D. Plavšić, N. Trinajstić, Molecular topological index: A relation with the Wiener index, J. Chem. Inf. Comput. Sci. 32 (1992), 304-305.
[12] D. Plavšić, S. Nikolić, N. Trinajstić, D.J. Klein, Relation between the Wiener index and the Schultz index for several classes of chemical graphs, Croat. Chem. Acta 66 (1993), 345-353.
[13] I. Tomescu, Some extremal properties of the degree distance of a graph, Discrete Appl. Math 98 (1999), 159-163.
[14] I. Tomescu, Unicyclic and bicyclic graphs having minimum degree distance, Discrete Appl. Math 156 (2008), 125-130.
[15] I. Tomescu, Properties of connected graphs having minimum degree distance, Discrete Math. 309 (2009), 2745-2748.
[16] O. Bucicovschi, S.M. Cioabă, The minimum degree distance of graphs of given order and size, Discrete Applied Mathematics 156 (2008), 3518-3521.
[17] P. Dankelmann, I. Gutman, S. Mukwembi, H.C. Swart, On the degree distance of a graph, Discrete Appl. Math (2009), doi:10.1016/j.dam.2009.04.006.
[18] H. Hua, Wiener and Schultz molecular topological indices of graphs with specified cut edges, MATCH Commun. Math. Comput. Chem. 61 (2009) 643-651.
[19] H. Deng, The Schultz Molecular Topological Index of Polyhex Nanotubes, MATCH Commun. Math. Comput. Chem. 57 (2007) 677-684.
[20] S. Chen, Q. Jang, Y. Hou, The Wiener and Schultz Index of Nanotubes Covered by C_{4}, MATCH Commun. Math. Comput. Chem. 59 (2008) 429-435.
[21] S. Klavžar, On the canonical metric representation, average distance, and partial Hamming graphs, European J. Combin. 27 (2006), 68-73.
[22] W. Imrich, S. Klavžar, Product Graphs: Structure and Recognition, John Wiley \& Sons, New York, 2000.
[23] B. Brešar, Partial Hamming graphs and expansion procedures, Discrete Math. 237 (2001), 13-27.
[24] V. Chepoi, Isometric subgraphs of Hamming graphs and d-convexity, Cybernetics 1 (1988), 6-11.
[25] E. Wilkeit, Isometric embeddings in Hamming graphs, J. Combin. Theory Ser. B 50 (1990), 179-197.
[26] R.L. Graham, P.M. Winkler, On isometric embeddings of graphs, Trans. Amer. Math. Soc. 288 (1985), 527-536.
[27] D. Djoković, Distance preserving subgraphs of hypercubes, J. Combin. Theory Ser. B 14 (1973), 263-267.
[28] P. Winkler, Isometric embeddings in products of complete graphs, Discrete Appl. Math. 7 (1984), 221-225.
[29] B. Brešar, On the natural imprint function of a graph, European J. Combin. 23 (2002), 149-161.
[30] M. Chastand, Fiber-complemented graphs. I. Structure and invariant subgraphs, Discrete Math. 226 (2001), 107-141.
[31] W. Imrich, Embedding graphs into Cartesian products, in: Graph Theory and its Applications: East and West, Jinan, 1986, pp. 266-274, Ann. New York Acad. Sci., 576, New York Acad. Sci, New York, 1989.
[32] M. Deza, M. Laurent, Geometry of Cuts and Metrics, Springer-Verlag, Berlin, 1997.
[33] S. Klavžar, Bird's eye view of the cut method and a survey of its applications in chemical graph theory, MATCH Commun. Math. Comput. Chem. 60 (2008) 255-274.
[34] S. Klavžar, I. Gutman, Wiener number of vertex-weighted graphs and a chemical application, Discrete Appl. Math. 80 (1997) 73-81.
[35] V. Chepoi, On distances in benzenoid systems, J. Chem. Inf. Comput. Sci. 36 (1996) 11691172.
[36] I. Gutman, S. Klavžar, An algorithm for the calculation of the Szeged index of benzenoid hydrocarbons, J. Chem. Inf. Comput. Sci. (35) (1995) 1011-1014.
[37] V. Chepoi, S. Klavžar, The Wiener index and the Szeged index of benzenoid systems in linear time, J. Chem. Inf. Comput. Sci. 37 (1997) 752-755.
[38] P. Žigert, S. Klavžar, I. Gutman, Calculating the hyper-Wiener index of benzenoid hydrocarbons, ACH Models Chem. 137 (2000) 83-94.
[39] S. Klavžar, P. Žigert, I. Gutman, An algorithm for the calculation of the hyper-Wiener index of benzenoid hydrocarbons, Comput. Chem. 24 (2000) 229-233.
[40] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
[41] M.V. Diudea, I. Gutman, L. Jäntschi, Molecular Topology, Nova, Huntington, New York, 2001.

[^0]: ${ }^{\ddagger}$ Corresponding author. If possible, send your correspondence via e-mail.

